2 research outputs found

    Mathematical Modelling of Spatially Coherent Transcription

    No full text
    Genetics and epigenetics are widely expected to revolutionise our understanding of health and disease. However any attempt to extract relevant information from noisy data requires a combination of modelling and statistical techniques. Given the number of genes and the complexity involved in the genome, sophisticated methods will be needed to properly capture the information that is contained. Many mechanisms and variables can affect and control the expression of a gene. In this thesis, it is specifically spatially coherent variations in transcription which are investigated. Several different areas were examined, producing a broad set of results. Important findings include the demonstration of spatial coherence as the result of epigenetic effects, the creation and validation of a technique to detect spatial coherence, and the extension of spatial modelling to epigenetic data. Other important results include the detection of spatial coherence variation due to confounding variables (PMI and neuronal concentration) and the development of new spatial modelling techniques. The results indicate that spatial modelling provides a useful approach to investigating unusual and unknown aspects of epigenetic and transcriptional regulation

    Mathematical modelling of spatially coherent transcription

    No full text
    Genetics and epigenetics are widely expected to revolutionise our understanding of health and disease. However any attempt to extract relevant information from noisy data requires a combination of modelling and statistical techniques. Given the number of genes and the complexity involved in the genome, sophisticated methods will be needed to properly capture the information that is contained. Many mechanisms and variables can affect and control the expression of a gene. In this thesis, it is specifically spatially coherent variations in transcription which are investigated. Several different areas were examined, producing a broad set of results. Important findings include the demonstration of spatial coherence as the result of epigenetic effects, the creation and validation of a technique to detect spatial coherence, and the extension of spatial modelling to epigenetic data. Other important results include the detection of spatial coherence variation due to confounding variables (PMI and neuronal concentration) and the development of new spatial modelling techniques. The results indicate that spatial modelling provides a useful approach to investigating unusual and unknown aspects of epigenetic and transcriptional regulation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore